報告題目:仿生納米材料-新型納米材料設(shè)計的新途徑
時間:2016年6月17日下午3:00
地點: 新校區(qū)中層干部會議室
歡迎廣大師生參加。
科技處
機(jī)械工程學(xué)院
2016年6月12日
【主講人簡介】:
孫子其博士,澳大利亞昆士蘭科技大學(xué)高級講師(同北美副教授)、澳大利亞優(yōu)秀青年基金獲得者。2003年中南大學(xué)材料學(xué)院獲得學(xué)士學(xué)位,同年考入中國科學(xué)院金屬研究所高性能陶瓷部,碩博連讀,研究方向為高性能結(jié)構(gòu)陶瓷。2009年獲工學(xué)博士學(xué)位,并獲得日本國立材料研究所博士后研究基金和德國洪堡學(xué)者基金支持。2010年加入澳大利亞臥龍崗大學(xué),在2010-2015年間獨立獲得澳大利亞國家獎研金、澳大利亞創(chuàng)新項目基金(同中國自然科學(xué)基金)、臥龍崗大學(xué)校長獎基金、澳大利亞優(yōu)秀青年等基金支持在澳大利亞臥龍崗大學(xué)超導(dǎo)與電子研究所進(jìn)行金屬氧化物納米材料在光電能轉(zhuǎn)化方面的研究。2015年起作為高級講師加入昆士蘭科技大學(xué)。目前孫子其博士已在Nature Communications, Journal of the American Chemical Society, NPG Asia Materials, Small 等國際著名期刊發(fā)表論文65篇,總影響因子超過400,H因子22。
【講座摘要】:
Learning from nature takes ideas from natural species and develops novel functional materials based on these concepts, e.g., bio-inorganic materials (biomineralization), bio-inspired multiscale structured materials (chiral morphologies), bio-nanomaterials (bio-nanoparticles), hybrid organic/inorganic implant materials (bonelike composites), and smart biomaterials. Many of these smart materials have surfaces that dynamically alter their physicochemical properties in response to changes in their environmental conditions and to triggered control of interfacial properties. In our research, by mimicking the well-ordered multiscale structures of natural interfaces or surfaces, many inorganic nanomaterials with bio-inspired structures and functions have been designed. For example, we designed fly-eye inspired superhydrophobic anti-fogging nanomaterials that have a low adherence force to water droplets and thus resist fogging-induced ice build-up even when exposed in extreme environments. The development of the fish-scale bio-inspired inorganic nanostructures, which have similar multiscale structures and multiple-functions to that of the natural targets, greatly extends the applications of bio-inspired materials to fields from micromechanical devices to heavy-duty machines as protective coatings against mechanical damage and chemical corrosion, as optical elements in optical devices and photovoltaic energies, and as low-drag or low-friction surfaces in gaseous, liquid, and solid media, etc. Therefore, we believe that the design of bio-inspired nanostructures could provide a new approach for develop novel multifunctional nanomaterials in the future.